

An Introduction to the Integrated Transport and **Health Impact Model (ITHIM)**

James Woodcock, PhD

Centre for Diet and Activity Research (CEDAR), University of Cambridge,

Neil Maizlish, PhD, MPH

Epidemiologist

Institute for Transportation Studies National Center for Sustainable Transportation University of California, Davis, CA June 20, 2016

ITHIM Timeline in California and the US

2009 Lancet Publication

2010-2011 Feasibility study and demonstration

2012-2013 Statewide regional calibration

SAS/R Program

Excel Output

Standardized Database

Calibration Worksheet

2014-16 Trainings and MPO implementations

2016- Implementation in R

ITHIM Training and Implementations in the US

- 7 training events (2013-2016)
 - ~105 transportation and health professionals
 - 5 MPOs
 - Centers for Disease Control
 - 3 state health departments
 - State agencies (CARB Research Division, CalTrans Districts)
 - 14 local health departments
 - University of Wisconsin
- **Implementations**
 - MTC
 - FresnoCOG
 - SANDAG
 - Nashville, TN MPO
 - Portland
 - USA

Climate Change and Public Health

- Climate change no. 1 public health threat
- California, world's14th largest greenhouse gas emitter
- Transportation is the largest source of GHGs in California – 37% of total (173 MMT CO₂e in 2013)
- How can we reduce GHG emissions?
 - Increase efficiency of vehicles and fuels
 - Reduce vehicle miles traveled

Smart Strategies Solve Multiple Problems

Chronic disease accounts for 93% of health burden

GHGs

Chronic Disease

- Do the strategies generate co-benefits or harms?
- What strategies yield significant health cobenefits?
- How do we measure this?

ITHIM Integrates Data on Health and Travel

Health Outcomes, CO₂, Costs

ITHIM Health Pathways, Diseases, and Injuries

- Physical Activity
 - Ischemic Heart Disease
 - Hypertensive Heart Disease
 - Stroke
 - Diabetes
 - Dementia (Alzheimer's)
 - Depression
 - Colon Cancer
 - Breast Cancer

Characteristics of Physical Activity Model

- Variation in exposures
 - Age & Gender
 - Distributions or individual level data not means
 - Combining different domains
- Non-linear relative risks

ITHIM Health Pathways, Diseases, and Injuries

- Air pollution
 - Cardio-pulmonary disease, asthma, inflammatory heart disease
 - Acute respiratory diseases in children
- Road Traffic Injuries
 - On-public roads, single and multiparty collisions
 - Severe and fatal

Leading Causes of Death, United States, 2014

	Cause of Death	N
	All causes	2,626,418
1.	Heart disease	614,348
2.	Cancer	591,699
3.	Chronic respiratory	147,101
4.	Unintentional injury	136,053
5.	Stroke	133,103
6.	Alzheimer's disease	93,541
7.	Diabetes mellitus	76,488
8.	Influenza/pneumonia	55,227
9.	Nephritis	48,146
10.	Suicide	42,773

Attributable Fraction of Disease Burden Due to . . .

- Change in the level of transportation-related physical activity through walking, bicycling alone and associated with transit
- Change in air pollution levels from shifting short car trips to active transport
- Change in road traffic injuries as distances shift more to active modes

Daily Active Travel Times and Distances for a Typical Resident

BAU = Business-as-Usual

Health Impacts of Active Transport Scenarios, Bay Area

	Change in disease burden	Change in premature deaths
Cardiovascular Dis.	6-15%	724-1895*
Diabetes	6-15%	73-189
Depression	2-6%	<2
Dementia	3-10%	63-218
Breast cancer	2-5%	15-48
Colon Cancer	2-6%	17-53
Road traffic crashes	10-19%	60-113

^{*} Range reflects range of physical activity in scenarios

Annual Health Benefits of Active Transport and Low Carbon Driving in the Bay Area: Predictions from the ITHIM Model

Annual Aggregate Reductions in Passenger Vehicle Greenhouse Gas Emissions from Different Transport Scenarios

Based on car VMT*BASSTEGG emission factor

† Adjusted for double counting of mode choice

BAU, Business-as-Usual; LCD, Low Carbon Driving; C/PAG, Carbon/Physical Activity Goal

^{*} Per capita reduction of 26%

Summary of Findings

A shift in active transport from a median of 4.4 to 22 minutes/day (2% to 15% distance mode share):

- Disease reductions
 - ◆14% of heart disease, stroke, and diabetes
 - ◆6-7% of dementia and depression
 - ◆5% of breast and colon cancer
 - Major public health impact
 - Adds about 9.5 months of life expectancy
 - >\$1.4-\$22 billion annual Bay Area health cost savings

ITHIM - Other Versions

- USA in policy (ITHIM 1)
 - Spreadsheet + extensive input data calibration
 - Multiple implementations e.g. Nashville, California, Oregon
 - Maintained and developed by Dr Neil Maizlish
- Research (ITHIM 2)
 - Analytica software package
 - Implementations include London Bike Sharing scheme 'Boris Bikes' & Sau Paulo, Brazil
- ITHIM 3 open source web based version in development

ITHIM 2

London Hire Bikes

Woodcock J, Tainio M, Cheshire J, O'Brien O, Goodman A. Health effects of the London bicycle sharing system: health impact modelling study. BMJ 2014;348

Aim

- ITHIM 3 USA
- ITHIM 3 UK
- ITHIM 3 GLOBAL

Development Steps

- Methods
 - Individual level modelling (inequalities)
 - Propensity based scenarios
- Improving Evidence Base
 - Physical Activity
 - ■Injury
- Adding New pathways
 - ■NOx & Ozone
 - Noise

Development Steps

- Open source in R language + Web based GUI
- Better integration with transport models

Open Source Model in R & Shiny

Integration with Transport Models

Contact Information

Neil Maizlish, PhD, MPH

Center for Climate Change and Health Public Health Institute, Oakland, CA Neil. Maizlish@phi.org

James Woodcock, PhD, MSc

Center for Diet and Activity Research

University of Cambridge, UK

jw745@medschl.cam.ac.uk

Options Part 2

- Modelling the pathways
 - Physical activity
 - Injuries
 - Air Pollution
- Data driven scenarios
 - Propensity & potential
- Integration with transport models
- Current & planned California implementations

